$=$
\equiv
\equiv
\equiv

Dr. Michael West and Dr. Damon Fick

Objective

- Determine the effects of variables on distortion
- Measure the strain fields as a function of process variables
- Measurement of residual stress as a function of variables
- Determine distortion in stiffened panels with optimized parameters

Approach

- Using the Faro Arm surface mapping tool determine the distortion induced during FSW.
- Map the surface of 4 in . wide by 8 in . long specimen pairs of 0.040 in . 7075-T6 Aluminum plate before and after FSW and try to determine the distortion.
- Attach 3 Strain gages of type CEA-13-120-EU to one of each specimen set to determine induced strain due to the FSW.
- Calculate Surface Strain due to FSW.
- Quantify Distortion of the welded aluminum plates.

Actual Photo of Specimen Preparation.

Experiments

Welding the Specimens

Weld Parameters	
Rotational Speed	$1200,900,600 \mathrm{rpm}$
Traverse Speed	10 ipm
Weld Depth	0.029 in

Position Control Weld

Pin Parameters Shoulder Diameter 0.249 in | Pin Diameter | 0.086 in |
| :--- | :--- | Pin Length 0.029 in

Results

Strain Data

FSW-09035-34 Strain 2

Quantifying Distortion

Z-axis Position	$D=\Sigma\|\mathrm{Zi}-\mathrm{Zf}\|$
Specimen	Distortion Index
$09035-31$	20.1521
$09035-33$	25.1127
$09035-34$	17.4232
$09035-35$	17.1474
$09035-36$	16.6752
$09035-37$	24.5089

FARO Arm Mappings

Conclusions and Future Work

- The Faro Arm is a useful tool for visualizing distortion in a plate.
- The Faro Arm is inconsistent enough that it does not seem to be a useful tool for determining strain.
- Strain Data shows clamping causes a significant amount of strain.
- Z axis quantification index appears to show higher distortion with higher index and lower distortion with lower index.
- Rotational Speed has little influence on distortion of panels.
- Further testing of specimens with different welding parameters.
- Develop a procedure to reduce distortion in Friction Stir Welding.

[^0]
[^0]: This project is funded through National Science
 Foundation Award Number 0437396 NSF I/UCRC Site: Center for Friction Stir Processing

